Importance Sampling of Area Lights in Participating Media

Christopher Kulla Marcos Fajardo
Outline

- Previous Work
- Single Scattering Equation
- Importance Sampling for Point Lights
- Importance Sampling for Area Lights
- Results
Previous Work - Unbiased Methods

- “Ray tracing volume densities” [Kajiya and Von Herzen, 1984]
- “Unbiased Global Illumination with Participating Media” [Raab et al, 2006]
Previous Work - Analytical Methods

- “A Practical Analytic Single Scattering Model for Real Time Rendering” [Sun et al, 2005]
- “An Analytical Solution to Single Scattering in Homogeneous Participating Media” [Pegoraro et al, 2009]
Previous Work - Realtime Shadowing

- “Interactive Volumetric Shadows in Participating Media with Single-Scattering” [Wyman et al, 2008]
- “Epipolar Sampling for Shadows and Crepuscular Rays in Participating Media with Single Scattering” [Engelhardt, 2010]
- “Real-Time Volumetric Shadows using 1D Min-Max Mipmaps” [Chen et al, 2011]
- “Voxelized Shadow Volumes” [Wyman et al, 2011]
Previous Work - Offline Methods

- “Radiance Caching for Participating Media” [Jarosz et al, 2008]
Our Contributions

We will focus on importance sampling of single scattering (direct lighting):

- Unbiased
- No memory requirements
- Simple implementation
- Easy integration into any Monte Carlo based renderer
Single Scattering Equation for Point Light

We want to evaluate radiance \(L \) through a pixel

\[
L(x, \vec{\omega}) = \sigma_s \int_b^a e^{-\sigma t (t + \Delta + \sqrt{D^2 + t^2})} \Phi_{D^2 + t^2} dt
\]
Single Scattering Equation for Point Light

Trace a ray into the homogeneous medium

\[L(x, \vec{\omega}) = \int e^{-\sigma t} \left(t^2 + \Delta^2 + \sqrt{D^2 + t^2} \right) \Phi_{D^2 + t^2} dt \]
Single Scattering Equation for Point Light

Point Light with power Φ

$$L(x, \bar{\omega}) = \Phi$$
Single Scattering Equation for Point Light

Point Light is a distance D from the ray

$$L(x, \vec{\omega}) = \frac{\Phi}{D^2}$$
Single Scattering Equation for Point Light

Contributes to point t along the ray (measured from projection point)

$$L(x, \vec{\omega}) = \frac{\Phi}{D^2 + t^2}$$
Single Scattering Equation for Point Light

Integrate contribution between a and b

\[
L(x, \vec{\omega}) = \int_{a}^{b} \frac{\Phi}{D^2 + t^2} dt
\]
Single Scattering Equation for Point Light

Account for scattering coefficient σ_s

$$L(x, \vec{\omega}) = \sigma_s \int_a^b \frac{\Phi}{D^2 + t^2} \, dt$$
Single Scattering Equation for Point Light

Account for extinction (σ_t) up to sample point

\[L(x, \vec{\omega}) = \sigma_s \int_a^b e^{-\sigma_t(t)} \left(\frac{\Phi}{D^2 + t^2} \right) dt \]
Single Scattering Equation for Point Light

To account for change of variables, we add the signed distance Δ from ray origin

$$L(x, \vec{\omega}) = \sigma_s \int_a^b e^{-\sigma t (t+\Delta)} \left(\frac{\Phi}{D^2 + t^2} \right) dt$$
Single Scattering Equation for Point Light

Finally, add extinction towards the light

\[L(x, \vec{\omega}) = \sigma_s \int_a^b e^{-\sigma_t (t + \Delta + \sqrt{D^2 + t^2})} \frac{\Phi}{D^2 + t^2} \, dt \]
Single Scattering Equation for Point Light

Omit phase function from equation to simplify the notation

\[L(x, \vec{\omega}) = \sigma_s \int_a^b e^{-\sigma t (t + \Delta + \sqrt{D^2 + t^2})} \frac{\Phi}{D^2 + t^2} \, dt \]
To evaluate the integral we take n samples along the line

$$L(x, \vec{\omega}) = \frac{\sigma_s}{n} \sum_{i=1}^{n} \left(e^{-\sigma_t(t_i+\Delta+\sqrt{D^2+t_i^2})} \frac{\Phi}{D^2+t_i^2} \right) / \text{pdf}(t_i)$$
Single Scattering Equation for Point Light

How should these samples be distributed?

\[L(x, \vec{\omega}) = \frac{\sigma_s}{n} \sum_{i=1}^{n} \left(e^{-\sigma_t(t_i + \Delta + \sqrt{D^2 + t_i^2})} \frac{\Phi}{D^2 + t_i^2} \right) / \text{pdf}(t_i) \]
Density distribution

- Place samples proportionally to attenuation?
Density distribution

- Place samples proportionally to attenuation?
- **Attenuation** is bounded by 1 and varies smoothly
Density distribution

- Place samples proportionally to attenuation?
- **Attenuation** is bounded by 1 and varies smoothly
- **Lighting** term varies as $1/r^2$
Place samples proportionally to attenuation?

- **Attenuation** is bounded by 1 and varies smoothly
- **Lighting** term varies as $1/r^2$
- Dominates as we get closer to the light
Place samples proportionally to attenuation?

Attenuation is bounded by 1 and varies smoothly

Lighting term varies as $1/r^2$

Dominates as we get closer to the light
Density distribution

- Place samples proportionally to attenuation?
- **Attenuation** is bounded by 1 and varies smoothly
- **Lighting** term varies as $1/r^2$
- Dominates as we get closer to the light
- Can we design a pdf proportional to lighting term?
Improving the distribution

Goal is to get a pdf proportional to lighting term:

$$pdf(t) \propto \frac{1}{D^2 + t^2}$$
Improving the distribution

Integrate pdf to obtain cdf:

\[
cdf(t) = \int \frac{1}{D^2 + t^2} \, dt = \frac{1}{D} \tan^{-1} \frac{t}{D}
\]
Improving the distribution

Use cdf to normalize over \([a, b]\):

\[
\text{pdf}(t) = \frac{D}{(\tan^{-1}\frac{b}{D} - \tan^{-1}\frac{a}{D})(D^2 + t^2)}
\]
Improving the distribution

Use cdf to normalize over $[a, b]$:

$$\text{pdf}(t) = \frac{D}{(\theta_b - \theta_a)(D^2 + t^2)}$$
Improving the distribution

Invert cdf to obtain distribution for $\xi_i \in [0, 1)$:

$$t_i = D \tan \left((1 - \xi_i) \theta_a + \xi_i \theta_b \right)$$
Improving the distribution

Sample distribution is *equi-angular*

\[t_i = D \tan ((1 - \xi_i) \theta_a + \xi_i \theta_b) \]
Results with 1 sample/pixel

Density sampling

Our method
Results with 16 samples/pixel

Density sampling

Our method
Sphere lights can use same equations!

Density sampling

Our method
What about general area lights?

Rectangular Generalized Quad Disc Textured
Single Scattering from Area Lights (first attempt)

- Apply equi-angular sampling from center

![Centered Equi-angular Sampling](image)

- Better results than density sampling
- But error increases away from the center
- Can be arbitrarily bad for wide lights

256 samples / pixel
Single Scattering from Area Lights (first attempt)

- Apply equi-angular sampling from center
- Better results than density sampling

Density Sampling
256 samples / pixel
Single Scattering from Area Lights (first attempt)

- Apply equi-angular sampling from center
- Better results than density sampling
- But error increases away from the center
- Can be arbitrarily bad for wide lights
Single Scattering from Area Lights (second attempt)

- Exchange integral over light area with line integral

Centered Equi-angular Sampling
256 samples / pixel
Single Scattering from Area Lights (second attempt)

- Exchange integral over light area with line integral
- Choose the light sample point \textit{first}

Centered Equi-angular Sampling
256 samples / pixel
Single Scattering from Area Lights (second attempt)

- Exchange integral over light area with line integral
- Choose the light sample point \textit{first}
- \textit{Then} apply equi-angular sampling

Varying Equi-angular Sampling
256 samples / pixel
Single Scattering from Area Lights (second attempt)

- Exchange integral over light area with line integral
- Choose the light sample point \textit{first}
- \textit{Then} apply equi-angular sampling
- Error is now more uniformly distributed

Varying Equi-angular Sampling
256 samples / pixel
Single Scattering from Area Lights

- Some high variance speckles remain
- $\frac{1}{D^2 + t^2}$ has a singularity in D as well

Varying Equi-Angular Sampling
Some high variance speckles remain

$1/(D^2 + t^2)$ has a singularity in D as well

Can mask these by clamping

 Clamp < 0.05
Some high variance speckles remain

$\frac{1}{(D^2 + t^2)}$ has a singularity in D as well

Can mask these by clamping (biased!)

 Clamp < 0.50 (too high!)
Some high variance speckles remain

\[\frac{1}{(D^2 + t^2)} \] has a singularity in \(D \) as well

Can mask these by clamping (biased!)

Or by applying MIS

MIS with phase function sampling
Examples (64 samples / pixel)

Density sampling

Our method
Examples (64 samples / pixel)

Density sampling Our method
Examples (16 samples / pixel)

Density sampling

Our method
Examples (16 samples / pixel)

Density sampling

Our method
Examples (16 samples / pixel)

Density sampling

Our method
Summary

- Equi-angular importance sampling for point and spherical lights
- Simple extension to arbitrary area lights
- Very simple implementation
- No restrictions on motion blur or visibility
Future Work

- Region close to light surface remains noisy
- Explore analytical solutions for rectangles and discs
- Incorporate phase function into estimate
- Apply to bidirectional path-tracing (camera behaves like a point light)
Thanks for listening!